On finite groups with a cyclic Sylow subgroup
نویسندگان
چکیده
منابع مشابه
POS-groups with some cyclic Sylow subgroups
A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.
متن کاملFINITE GROUPS WITH A SYSTEM OF NILPOTENT SUBGROUPS CONTAINING THE SYLOW SUBGROUP By
Let G be a finite group and p an odd prime. By M < G we denote that M is a proper subgroup of G. Put the set Ψ p (G) = {M:M < G, |G : M| 6= a prime power and |G : M|p = 1}. In this paper we investigate the structure of G if every member of Ψ p (G) is nilpotent.
متن کاملA REDUCTION THEOREM FOR UNil OF FINITE GROUPS WITH NORMAL ABELIAN SYLOW 2-SUBGROUP
Let F be a finite group with a Sylow 2-subgroup S that is normal and abelian. Using hyperelementary induction and cartesian squares, we prove that Cappell’s unitary nilpotent groups UNil∗(Z[F ];Z[F ],Z[F ]) have an induced isomorphism to the quotient of UNil∗(Z[S];Z[S],Z[S]) by the action of the group F/S. In particular, any finite group F of odd order has the same UNil-groups as the trivial gr...
متن کاملpos-groups with some cyclic sylow subgroups
a finite group g is said to be a pos-group if for each x in g the cardinality of the set {y in g | o(y) = o(x)} is a divisor of the order of g. in this paper we study the structure of pos-groups with some cyclic sylow subgroups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1970
ISSN: 0019-2082
DOI: 10.1215/ijm/1256053175